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ABSTRACT
We present the Smoothed Hessian Major Axis Filament Finder (SHMAFF), an algorithm that uses
the eigenvectors of the Hessian matrix of the smoothed galaxy distribution to identify individual
filamentary structures. Filaments are traced along the Hessian eigenvector corresponding to
the largest eigenvalue and are stopped when the axis orientation changes more rapidly than
a preset threshold. In both N-body simulations and the Sloan Digital Sky Survey (SDSS)
main galaxy redshift survey data, the resulting filament length distributions are approximately
exponential. In the SDSS galaxy distribution, using smoothing lengths of 10 and 15 h−1 Mpc,
we find filament lengths per unit volume of 1.9×10−3 and 7.6×10−4 h2 Mpc−2, respectively.
The filament width distributions, which are much more sensitive to non-linear growth, are
also consistent between the real and mock galaxy distributions using a standard cosmology.
In SDSS, we find mean filament widths of 5.5 and 8.4 h−1 Mpc on 10 and 15 h−1 Mpc
smoothing scales, with standard deviations of 1.1 and 1.4 h−1 Mpc, respectively. Finally, the
spatial distribution of filamentary structure in simulations is very similar between z = 3 and
z = 0 on smoothing scales as large as 15 h−1 Mpc, suggesting that the outline of filamentary
structure is already in place at high redshift.

Key words: methods: data analysis – surveys – cosmology: observations – large-scale struc-
ture of Universe.

1 I N T RO D U C T I O N

Observational evidence for filamentary structures in the large-scale
distribution of galaxies was first presented in galaxy redshifts
surveys (e.g. Thompson & Gregory 1978; Davis et al. 1982; de
Lapparent, Geller & Huchra 1986; Sathyaprakash et al. 1998;
Colless et al. 2001; Gott et al. 2005). When similar structures were
seen in cosmological N-body simulations of the dark matter dis-
tribution (e.g. Bond, Kofman & Pogosyan 1996; Sathyaprakash,
Sahni & Shandarin 1996; Aragón-Calvo et al. 2007; Hahn et al.
2007a), a picture of a vast ‘cosmic web’, in which filaments skirted
the boundaries of voids and were connected by galaxy clusters, be-
gan to emerge. These filaments are thought to provide pathways for
matter to accrete on to galaxy clusters (e.g. Tanaka et al. 2007) and
to torque dark matter haloes to align their spin axes (Hahn et al.
2007a,b, 2009). Filaments also produce deep potential wells and
will give rise to a gravitational lensing signal on the largest scales
(Dietrich et al. 2005; Massey et al. 2007). A number of authors
have claimed detections of filaments using weak lensing (e.g. Kaiser
et al. 1998; Dietrich et al. 2005; Massey et al. 2007), but simulations
predict that structure along the line of sight should produce shear
comparable to that of the target filaments (Dolag et al. 2006) and the
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evidence remains far from conclusive. In addition, the formation of
filaments is accompanied by gravitational heating, which gradually
increases the temperature of the intergalactic medium over time
and produces the so-called warm–hot intergalactic medium by z =
0 (e.g. Cen & Ostriker 1999).

Perhaps the simplest and most effective means of identifying
clusters in discretely sampled fields, such as redshift surveys and
N-body simulations, is the friends-of-friends algorithm (FOF;
Huchra & Geller 1982), in which particle groups are assembled
based on the separation of nearest neighbours. These FOF structures
can then be quantified with ‘Shapefinders’, statistics which measure
the length, breadth and thickness of structures and are related to the
Minkowski functionals (Sahni, Sathyaprakash & Shandarin 1998).
Sheth et al. (2003) have developed an algorithm for computing the
Shapefinders on structures at an arbitrary density threshold. Many
of those found in data and simulations are indeed filamentary, but
FOF algorithms are optimized for structures that lie above a set
density threshold, a condition approximately met by clusters at the
present epoch. Filaments and walls, however, are not bound and a
strict density cut alone would not provide clean samples of such
structures.

Another algorithm, called the Skeleton (Novikov, Colombi &
Doré 2006; Sousbie et al. 2008a,b), identifies filaments by search-
ing for saddle points in a density field and then following the den-
sity gradient along the filament until it reaches a local maximum.
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Although it appears to be effective at making an outline of the
cosmic network, it lacks an intuitive definition of filament ends.
Aragón-Calvo et al. (2008) were also not able to provide such a def-
inition, but has been successful at tracing the filament network in
cosmological simulations using watershed segmentation (see also
Platen, van de Weygaert & Jones 2007) and a Delaunay tessellation
density estimator (Schaap & van de Weygaert 2000). If we wish
to analyse filament length distributions or their spatial relationship
to clusters, it is important to separate individual filaments in the
cosmic web. Structure-finding techniques that only detect filaments
between galaxy cluster pairs (e.g. Colberg, Krughoff & Connolly
2005; Pimbblet 2005; Gonzalez & Padilla 2010) would present a
biased view of the filament–cluster relationship.

An early technique for identifying filaments in two-dimensional
data was developed by Moody, Turner & Gott (1983) that works on
a similar principle to the algorithm described in this paper. It di-
vides the density field into a pixelized grid and identifies as filament
elements any grid cell that has a larger density than its immediate
neighbours along two of the four axes (including the two coordinate
axes and two axes at 45◦ angles to the grid) through the grid cell.
The algorithm was run on the Shane–Wirtanen galaxy count cata-
logue (Seldner et al. 1977) but has not been developed further. A
later algorithm, presented by Dave et al. (1997), works on a similar
principle, identifying ‘linked sequences’ using the eigenvectors of
the inertia tensor. The authors found that the algorithm was poor
at discriminating between cosmological models using CfA1-like
mock galaxy catalogues, primarily because of the small number of
galaxies in the catalogues.

In Paper I, we used the distribution of the Hessian eigenvalues of
the smoothed density field (λ-space) on a grid to study three types
of structure: clumps, filaments and walls. Filaments were found in
the λ-space distributions at a variety of smoothing scales, ranging
at least from 5 to 15 h−1 Mpc, in both N-body simulations and
the galaxy distribution measured by the Sloan Digital Sky Survey
(SDSS; York et al. 2000). Furthermore, filaments were found to
dominate the large-scale distribution of matter using smoothing
scales of 10–15 h−1 Mpc, giving way to clumps with ∼5 h−1 Mpc
smoothing.

The fact that the eigenvalues of the Hessian can be used to dis-
criminate different types of structure in a particle distribution is fun-
damental to a number of structure-finding algorithms (e.g. Colombi,
Pogosyan & Souradeep 2000; Aragón-Calvo et al. 2007; Hahn et al.
2007a; Forero-Romero et al. 2009). However, the relationship be-
tween λ-space and a particular structure is not always trivial. For
example, one might think that a filamentary grid cell would have
two positive and one negative eigenvalues. This will be true near the
centre of a filament connecting two overdense filament ends, but in
the vicinity of the overdensities or in the case that the filament ends
at an underdensity, all three eigenvalues will become negative. In
addition, when working with a smoothed density field, these criteria
select regions that are near clumps and do not necessarily lie along
the filament. Finally, these criteria disregard the structure’s width –
for example, the regions away from the centre of the filament may
have positive values of λ2.

In this paper, we will describe a procedure to identify filaments in
the three-dimensional galaxy distribution using an algorithm called
the Smoothed Hessian Major Axis Filament Finder (SHMAFF) and
compare their properties in cosmological N-body simulations to
those in the SDSS galaxy redshift survey. We describe our method-
ology, which uses the eigenvalues and eigenvectors of the smoothed
Hessian matrix (see Bond, Strauss & Cen 2010, hereafter Paper I),
in Section 2. In Section 3, we run the code with a range of possi-

ble input parameters and justify our choices for each. We discuss
the behaviour of the algorithm when used on Gaussian random
fields in Section 4, allowing us to distinguish those features of
the large-scale distribution of matter that are a direct consequence
of the non-linear growth of structure. In Section 5, we use mock
galaxy catalogues to estimate the incompleteness and contamina-
tion rates of filament samples and then use these quantities to inter-
pret the distribution of filaments found in the SDSS (Section 6). In
Section 7, we summarize our results and discuss the implications
of our findings.

2 FI NDI NG I NDI VI DUAL FI LAMENTS

Filaments, clusters and walls all present sharp features in the density
field along at least one of their principal axes. In Paper I, we de-
scribed a procedure to generate a matrix of Gaussian-smoothed sec-
ond derivatives of the density field (the Hessian matrix) at each grid
cell, computing its eigenvalues, λi (defined such that λ1 < λ2 < λ3),
and eigenvectors, Ai. For the testing and development of the algo-
rithm, we ran a series of cosmological N-body simulations, using
a particle-mesh code with �m = 0.29, �� = 0.71, σ8 = 0.85
and h = H0/(100 km s−1 Mpc−1) = 0.69 (see Paper I for details).
The simulation is performed within a 200 h−1 Mpc box with 5123

particles, each with mass, mp = 4.77 × 109 h−1 M�.
In order to generate a three-dimensional distribution of mock

galaxies, we first identify dark matter haloes within the parti-
cle distribution using the HOP algorithm (Eisenstein & Hut 1998)
and then populate them using the halo occupation distribution
and parametrization of Zheng, Coil & Zehavi (2007, see Paper I
for details). The resulting mock galaxy distribution is smoothed
using a Gaussian kernel and its second derivatives, yielding a
128 × 128 × 128 grid with Hessian eigenvalues and eigenvectors in
each cell. In Fig. 1, we plot a slice from the simulation 10 h−1 Mpc
deep and 27.21 h−1 Mpc on a side, chosen to encompass a prominent
filamentary structure. Shown are the galaxies (upper left), galaxy
density map (upper right) and λ1 map (lower left and lower right),
smoothed with a l = 2 h−1 Mpc kernel to bring out the filament.
The structure appears most clearly in λ1, so we construct a list of
grid cells, G, ordered by an increasing value of λ1. Before marking
the first filament, we remove from G all grid cells that satisfy any
of the following criteria:

λ1 > 0

λ2 > 0

ρ < ρ̄, (1)

where ρ̄ is the mean density of objects making up the density field.
The λ1 and λ2 thresholds follow from the definition of a filament
– the density field must be concave down along at least two of the
principal axes.

The first element in G (the most negative in λ1) is marked with
a cross in the lower left panel of Fig. 1. From this starting point,
we trace out the filament in both directions of the ‘axis of structure’
(parallel and antiparallel to A3), taking steps equal to the grid scale of
1.5625 h−1 Mpc. Subsequent filament elements are not constrained
to lie on the grid, so we use a third-order polynomial interpolation
scheme (Press, Flannery & Teukolsky 1986) on the grid to obtain
the local Hessian parameters. If, at any point along the filament, the
angular rate of change of the axis of structure exceeds a threshold, C,
we stop tracing and mark the point as a filament end. The stopping
condition at step m is given by∣∣A3,m × A3,m−1

∣∣ > sin(C �), (2)
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Figure 1. Slice from a cosmological simulation 10 h−1 Mpc deep and 27.21 h−1 Mpc on a side, encompassing a prominent filamentary structure. Shown are
the galaxies (upper left), density map (upper right) and λ1 map (lower two panels), where smoothing is performed on a scale of l = 2 h−1 Mpc. The cross in
the lower left panel indicates the minimum value of λ1 on the slice. This will be the starting point for the first filament traced by the algorithm. The circle
around the cross has a radius equal to the removal width (see the text). The solid lines in the lower right panel indicate the filaments as traced by a 2D version
of SHMAFF.

where �, the grid cell size, is also the size of each step. The filament
finder will also stop and mark a filament end if it passes into a cell
that satisfies one or more of the criteria specified in equation (1).
In the lower right panel of Fig. 1, we show the filaments that result
from a sample run of SHMAFF on a 27×27×10 h3 Mpc−3 slice from
the dark matter particle distribution in our cosmological simulation.

For each step along a filament, all grid cells within a width, W,
of the most recently chosen filament element, are removed from G,
where

Wi = K

√
−ρi

λ1, i

. (3)

In order to avoid tracing a filament more than once, subsequent
filaments cannot start within one of the removed cells. They may,
however, extend into a removed cell, so long as the cell is not
excluded by any of the criteria given in equations (1) and (2). For
a cylindrical filament with a Gaussian cross-section extending into
a zero-density background, a value of K = 1 should exclude those
parts of the structure that are not already excluded by equation (1).

The filaments traced by the above algorithm may be offset from
the ridges in the initial point field because of the finite resolution
of the grid. Thus, we adjust the position of a filament element, j,
based on the average perpendicular displacement of nearby grid
cells from the filament axis,

�̄sj =
∑N

i=1 Ri

N
, (4)

where

Ri = Âj × ( Âj × (xj − xi)). (5)

Here, Âj is the unit vector along the axis of structure (with an
arbitrary sign) and N is the number of objects in the initial point
field that are within a smoothing length. Application of the centring
algorithm can result in fragmented filaments when shot noise is
non-negligible, so we will not run it on point distributions with very
sparse sampling, such as the SDSS galaxy distribution.
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Figure 2. Filaments found in the z = 0 dark matter distribution of a cosmological simulation are plotted (in red) over a subsample of dark matter particles
(black). Filaments are found in a density field smoothed with the kernel length indicated below each box. For l = 5 h−1 Mpc, we only show an octant of the
full simulation box, as the full filament distribution is so rich that the figure for the full box would be too crowded.

3 FILAMENT-FINDING PARAMETERS

In the filament-finding routine described in Section 2, there are two
free parameters, the curvature criterion for identifying the filament
ends, C, and the width of filament removal, K (see equation 3). In
principle, the optimal values of these parameters can be functions
of the smoothing scale, redshift or type of tracer (e.g. galaxies,
dark matter particles), so it is important to understand their impact
on the algorithm’s output. In this section, we will test the perfor-
mance of the code on the distribution of dark matter particles in
our cosmological simulation as a function of K, C and the sampling
rate.

In Fig. 2, we show a run of the filament finder on the z =
0 dark matter distribution of the cosmological simulation, using
C = 40◦ l−1 and K = 1. Output is shown for smoothing with l =
15, 10 and 5 h−1 Mpc, illustrating the scale dependence and co-
herence of the cosmic network. Any given filament will be found
on a range of scales, depending on its width and length, but as the
smoothing length is made smaller, the filament will be broken up
into substructures which will themselves be filamentary or clump-
like (see figs 15 and 16 in Paper I).

3.1 Sampling the filament length distributions

Before defining the parameters that are used to find filaments, we
must decide on what we are willing to accept as a real filament. An
isolated spherical overdensity should not be viewed as a filament,
but the filament finder would treat it as a very short ridge, tracing it
from its centre until random fluctuations caused the axis of structure
to deviate more than C, producing a ‘short filament’. Fig. 3 shows the
raw distribution of filament lengths for our dark matter simulation
shown in Fig. 2, using C = 30◦ l−1, K = 1 and a smoothing
length of 5 h−1 Mpc. Not surprisingly, the distribution exhibits a
dramatic drop-off below a smoothing length. With this in mind,
we hereafter discard filaments whose lengths are shorter than the
smoothing length as non-physical.

3.2 The C parameter

The traditional picture of large-scale structure as a ‘cosmic web’
(Bond et al. 1996) suggests that filaments are connected, one-
dimensional strands that end abruptly at their points of intersec-
tion. As one filament begins and another ends, the local axis of
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Figure 3. Length distribution for a sample of filaments found in the
z = 0 smoothed dark matter distribution (smoothing kernel width of
l = 5 h−1 Mpc). The dashed line indicates the smoothing length, below
which filaments are removed from the sample.

structure should change the direction rapidly. The C parameter de-
notes the maximum angular rate of change in the axis of structure
along a filament. If this threshold is exceeded, filament tracing is
stopped.

In order to test the sensitivity of the output filaments to the value
of the C parameter, we set K = 1 and generated filament networks
in the N-body simulation with a range of C. In all of these tests,

increasing the value of C led to an increase in the average length of
the filaments and a decrease in the total number of filaments found.
If the curvature criterion is not strict enough, a filament will be
traced past its vertex and into another filament. Since our algorithm
only prevents filaments from starting within previously identified
filaments (they are allowed to cross one another), this can lead to
double detections of filaments. We can obtain a rough count of these
double detections by comparing filament elements to one another,
where a filament element is defined as a single step (of interval, �)
on the grid. In other words, for each step along a given filament, we
find the closest filament element that is not a member of that same
filament. If the closest filament element is within a smoothing length
and has an axis of structure within C, then the original element is
labelled a ‘repeat detection’. The total number of repeat detections
in an output filament network is denoted by R. The total length of
the network at this scale is therefore given by

Lf = (Ne − R)�, (6)

where Ne is the total number of filament elements found and �

is the step size taken by the filament finder. Non-filamentary re-
gions of space have already been excluded by the criteria in equa-
tion (1), so an optimum set of parameters will maximize Lf while
minimizing R.

In the left-hand panel of Fig. 4, we plot both the fraction of repeat
detections (R/Ne, dotted lines) and the total length of the network
(Lf , solid lines) as a function of C. On all smoothing scales, the
fraction of false positives increases steadily with increasing C, with
no obvious breaks or minima. The total length, however, tends to
rise until it reaches a maximum, after which point it either flattens or
falls slowly. This suggests that, as long as the curvature criterion is
above a critical value, the algorithm will trace out the entire filament
network. Since the fraction of false positives increases with C, we
will hereafter use a curvature criterion near this value; that is, C =
50, 40 and 30◦ l−1 for l = 15, 10 and 5 h−1 Mpc, respectively.

Figure 4. Total length of the output filament network (solid lines) and the fraction of ‘repeat detections’ (dotted lines) as a function of the curvature criterion,
C (left) and K (right). The value of C determines the filament ending points and the value of K determines the removal width (see equation 3). Filaments were
identified on three different smoothing scales, l = 15 h−1 Mpc (blue), l = 10 h−1 Mpc (green) and l = 5 h−1 Mpc (red). The total length of the network (after
removing repeat detections) maximizes at a value of C that depends on the smoothing length.
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3.3 The K parameter

As each filament is found, we wish to remove from the grid as
much of it as possible without preventing the detection of further
real filaments. Using the previously determined critical values of C,
we ran the filament finder with a range of K and computed the total
length of the filament network and the fraction of repeat detections
as a function of K. The results are shown in the right-hand panel of
Fig. 4. All of the curves are monotonic, with repeat detections and
the network length decreasing with increasing K. Hereafter, we will
set K = 1 because it yields R/Ne � 20 per cent.

3.4 Effects of sparse sampling

In real galaxy catalogues, the number of galaxies per smoothing
volume will sometimes be small and it is important to understand
the impact of shot noise on the algorithm’s ability to trace the
filament network. In a density field with sparse sampling, shot
noise will create spurious filament detections in addition to the
‘repeat detections’ described in Section 3.2. We have an effectively
shot-noise-free density field in the dark matter particle distribution
(with the simulation using a mean dark matter particle density of
17 particles h3 Mpc−3), so we perform sparse sampling on this field
and use the complete particle distribution as a standard for com-
parison. We construct three such data sets, sampled to densities of
5 × 10−3, 2 × 10−3 and 1 × 10−3 particles h3 Mpc−3, respectively,
matching the densities of the real galaxy samples to be presented
in Section 6. For each sample, we recompute the SHMAFF parame-
ters and run the filament finder on all three smoothing scales, using
the parameters derived in previous sections. We will call a ‘false
positive’ any filament element found in the sparsely sampled data
whose nearest neighbouring element in the ‘true’ filament network
is more than a smoothing length away or does not have an axis of
structure within an angle equal to C × l. Similarly, incompleteness
is quantified by counting the filament elements in the ‘true’ network
that have no counterparts in the sparse-sampled one.

As illustrated in Fig. 5, the incompleteness and contamination
rates of individual filament elements are strong functions of λ1

for the ‘weakest’ edges, but these make up only a small fraction
of the filament network. Our tests (not shown) suggest that the
incompleteness and contamination rates are �20 per cent so long
as there are an average of �5 particles within spheres of radius
equal to the Gaussian smoothing length. See Section 5 for a more
detailed analysis of completeness and contamination in mock galaxy
samples.

4 FILAMENTS A S N ON-GAU SSIANITIES

Gaussian random fields serve as an important reference point if
we wish to distinguish the consequences of the non-linear growth
of structure from phenomena seen only in the linear regime. We
know that Gaussian random fields are not filamentary and one
might question why we should find any filaments in such a dis-
tribution. Bear in mind, however, that the SHMAFF algorithm traces
any negatively curved region and these conditions will certainly
be met by some of the overdensities in a Gaussian random field.
We demonstrated in Paper I that although the smoothed λ1 dis-
tributions appeared ‘filamentary’ in both a Gaussian random field
and the evolved dark matter distribution, the latter showed align-
ment between the axis of structure and these filamentary minima
in λ1. The filament-finding algorithm enables us to follow the axis

Figure 5. Incompleteness and contamination of filament pixels as a function
of λ1 (scaled to the mean density and smoothing length) in the filament
elements of a dark matter particle distribution sparse-sampled to match the
density of Mr < −20 galaxies (5.0 × 10−3 h3 Mpc−3). The sparse-sampled
field was smoothed on a scale of 5 h−1 Mpc, yielding 2.6 particles per
smoothing volume, and its filaments were compared with those in the full
dark matter particle distribution smoothed on the same scale. Their total
incompleteness and contamination rates were both ∼20 per cent.

of structure and trace out individual large-scale structures in each
distribution.

Using the z = 0 linear power spectrum (Spergel et al. 2007) with
corrections in the non-linear regime (Smith et al. 2003; the same
one used in the N-body simulations discussed here), we generate
a continuous realization of a three-dimensional Gaussian random
field. We use l = 5 h−1 Mpc, C = 30◦ l−1, K = 1 to derive the
filament distribution shown in the upper right panel of Fig. 6 and
compare it with identical runs on the z = 0 dark matter distribution
in the cosmological simulation (upper left panel). The qualitative
differences between the two are substantial. While the output for the
dark matter distribution resembles a noded network, with filaments
converging and ending at vertices in the network, the ‘filaments’
in the Gaussian random field appear more randomly oriented and
show no apparent correlations with one another. Using 5 h−1 Mpc
smoothing, the filament length distributions for the Gaussian ran-
dom field and dark matter distribution are shown in the centre panel
of Fig. 6. The distributions are very similar and clearly exponential

above a length of ∼10 h−1 Mpc, with N (L) ∼ 10
−0.1L
Mpc , suggest-

ing that filaments have not collapsed much along their longest axis
since their formation but have changed their alignment in relation
to nearby structures.

We will define the width of a filament element, W, to be the root-
mean-squared perpendicular offset of particles within a smoothing
length; that is,

W =
√∑N

i=1 |Ri |2
N

, (7)

where Ri is defined in equation (5) and the sum is over all of the
N particles within one smoothing length of the filament element. In
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Figure 6. Distribution of filaments in the dark matter distribution (no sparse sampling, upper left panel) and a Gaussian random field (upper right) with the
�CDM z = 0 non-linear power spectrum. The filaments are found on l = 5 h−1 Mpc scales and we only plot subsections of the full 200 h−1 Mpc boxes. In the
centre and lower panels, we show the filament length and width distributions, respectively, for the dark matter distribution (solid line) and Gaussian random
field (dashed line). In both cases, the filament-finding algorithm was run with C = 30◦ l−1 and K = 1.

the lower panel of Fig. 6, we plot the width distributions for the two
fields, again using l = 5 h−1 Mpc. The dark matter width distribu-
tions are broader and are peaked at smaller widths, suggesting that
the filaments have collapsed significantly along two of their princi-
pal axes, despite having a similar length distribution. As one would
expect with bottom-up structure formation, the width distribution
in the Gaussian random field and dark matter distribution are more
discrepant at smaller smoothing scales (other scales not shown).

4.1 Filament evolution

In Paper I, we showed that on a given comoving smoothing scale,
there was evidence for a wall-to-filament-to-clump evolution with
cosmic time. Furthermore, we showed that the axis of structure
aligns with the filamentary backbone in two-dimensional slices from
cosmological simulations as early as z = 3 (see fig. 14 in Paper I).
Fig. 7 shows the filament distribution at z = 0 and z = 3, now with
l = 15 h−1 Mpc so as to test the largest and least-evolved structures

in the simulation box. We used a smaller removal width, K = 0.6,
for the z = 3 filament distribution because the filaments are of lower
contrast than at z = 0, causing equation (3) to overestimate their
sizes. The z = 3 and z = 0 filament distributions are very similar
to the eye, suggesting that the basic filament framework for l =
15 h−1 Mpc is almost entirely in place at z = 3 [where 15 h−1 Mpc
fluctuations have

〈
(�M/M)2

〉1/2 ∼ 0.1]. The right-hand panel of
Fig. 7 shows the filament element width distributions as a function
of redshift. As non-linear evolution proceeds, the filament width
distributions broaden and peak at smaller widths.

5 FI L A M E N T S IN TH E M O C K G A L A X Y
C ATA L O G U E S

Before we proceed to identify filaments in the SDSS data, we run
the filament finder on the mock galaxy samples in redshift space
(see Paper I) and compare the resulting filaments to those identified
in the real-space z = 0 dark matter distribution. The l = 5 h−1 Mpc
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Figure 7. Dark matter filament distributions at z = 3 and z = 0 after l = 15 h−1 Mpc smoothing. The former was found with a smaller value of K because
the algorithm tends to overestimate filament widths when the filaments are of low contrast (see the text). Both the number and spatial distribution of filaments
appear to be similar at the two redshifts, but the width distributions are not, as shown in the right-hand panel. Here, the filament width distributions at z = 3
(dashed line), z = 1 (dotted line) and z = 0 (solid line) are plotted.

filament distribution is very strongly affected by redshift distortions
– the contamination rates are typically ∼40 per cent, about double
the contamination of the filament samples without redshift distor-
tions. This is due primarily to the ‘Finger-of-God’ effect, which
causes galaxy clusters to extend into narrow, sharp filament-like
features along the line of sight. Fortunately, the filament finder
is insensitive to these distortions on 10 and 15 h−1 Mpc scales
because the Fingers-of-God are typically �1 h−1 Mpc in width.
Nevertheless, we can improve our results if we first remove the
Fingers-of-God.

5.1 Identification and removal of Fingers-of-God

Fingers-of-God from galaxy clusters are extended along the ob-
server’s line of sight, while real filamentary structure have no pre-
ferred direction. In order to separate the Fingers-of-God from the
real filaments, we will use an FOF algorithm with two linking
lengths:

b‖ = b · r̂

b⊥ =
√

|b|2 − b2
⊥, (8)

where r̂ is the unit vector along the observer’s line of sight
(Huchra & Geller 1982). With these two parameters defined, the
algorithm searches for cylindrical structures with a diameter-to-
length ratio of b⊥/b‖. Berlind et al. (e.g. 2006, hereafter B06)
did an exhaustive study of this two-parameter space and found
that b⊥ = 0.14 and b‖ = 0.75 gave unbiased estimates of
the group multiplicity function, so we adopt these values in our
study.

5.2 Filaments after cluster collapse

All of the tests in this section were performed on the samples of
mock galaxies with density similar to that of Mr < −20 galaxies.
First, we removed galaxy clusters from the real-space mock galaxy
distribution using an isotropic FOF algorithm with b|| = b⊥ = 0.2
and a minimum group size of Nmin = 5. For l = 10 h−1 Mpc, the
filament incompleteness and contamination rates for the cluster-free
filament distribution (33 and 39 per cent, respectively) are much
larger than those in real space (16 and 25 per cent), suggesting
that overdensities on megaparsec scales are playing an important
role in defining filaments on 10 h−1 Mpc scales. Similar results are
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obtained when clusters are found and removed in redshift space
using the approach of Section 5.1.

If we instead collapse the Fingers-of-God presented by galaxy
clusters, we can remove most of the contamination without hav-
ing to remove the clusters themselves. For this study, we will take
the very simple approach of moving all members of a particular
cluster to their mean position; that is, we will collapse the Fingers-
of-God to a point weighted by the number of galaxies in the cluster.
If we follow this procedure, the incompleteness and contamina-
tion are smaller (19 and 26 per cent) than the cluster-free mock
galaxy distributions and a marginal improvement over the redshift-
space distribution with no special treatment of clusters (20 and
27 per cent).

We repeated this exercise for filaments found on a 5 h−1 Mpc
smoothing scale. Collapsing the Fingers-of-God does lead to a
marginal improvement, but filaments are still very poorly defined
in redshift space at these densities, with ∼40 per cent contamina-
tion rates. A more sophisticated treatment of the clusters may be
needed, but is beyond the scope of this paper. In the section that
follows, we will discuss the application of the filament finder to real
SDSS data. To minimize contamination, we will be working only
with filaments found on 10 and 15 h−1 Mpc scales and only after
collapsing Fingers-of-God.

6 FI LAMENTS IN THE SDSS GALAXY
DI STRI BU TI ON

The SDSS has imaged a quarter of the sky in five wavebands,
ranging from 3000 to 10 000 Å, to a depth of r ∼ 22.5 (York et al.
2000). As of Data Release 6 (DR6; Adelman-McCarthy et al. 2008),
spectra had been taken of ∼800 000 galaxies, covering 9583 deg2

and extending to Petrosian r ∼ 17.7 (Strauss et al. 2002). Galaxy
redshifts are typically accurate to ∼30 km s−1, making it ideal for
studies of large-scale structure. For this study, we need a portion of
sky with relatively few coverage gaps to minimize the effect of the
window function on the λ-space distributions. With this in mind, we
construct two volume-limited subsamples from the northern portion
(8 < α < 16 h and 25 < δ < 60) of the DR6 update of the NYU
Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al. 2005) the
first 140×140×340 (h−1 Mpc)3 in size with Mr < −20.5 (Mr205)
and the second 170 × 170 × 400 (h−1 Mpc)3 in size with Mr <

−21 (Mr21). The samples extend to maximum redshifts of z = 0.12
and z = 0.15, respectively, and are plotted in redshift space in Fig. 8.
Absolute magnitudes were computed with KCORRECT (Blanton et al.
2003) using SDSS r-band Petrosian magnitudes shifted to z = 0.1
(and using h = 1).

We described the compilation and processing of the SDSS sub-
samples and their mock counterparts in Paper I. Before generating

Figure 8. Two volume-limited samples taken from the SDSS NYU-VAGC large-scale structure sample, with galaxies placed at their comoving positions based
on the concordance cosmology. The arrows indicate the location of the Milky Way, which is r = (310, −20, 170) h−1 Mpc and r = (400, −25, 200) h−1 Mpc
in the Mr205 and Mr21 samples, respectively. The z-axes are parallel to the North Galactic Pole.
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Figure 9. Filaments found in the Mr205 (left, l = 10 h−1 Mpc) and Mr21 (right, l = 15 h−1 Mpc) SDSS samples. These are the full filament samples after the
filament finder was run with the ‘best’ parameters. Note that the boxes are different (overlapping) volumes of space and thus are not directly comparable to
one another.

the filament distributions, we identify and collapse the Fingers-of-
God as described in the last section. After performing this procedure
on the Mr205 and Mr21 samples (both real and mock), we smooth
the former with l = 10 h−1 Mpc and the latter with l = 15 h−1

Mpc. These choices maximize the volume covered while keeping
the sampling rate high enough that filament contamination is under
∼25 per cent (see Section 5.2).

We run the filament finder on the Mr205 and Mr21 galaxy
samples using C = 40◦ l−1 and C = 50◦ l−1, respectively, and
K = 1. The resulting filaments are shown in Fig. 9. After re-
moving filaments shorter than a smoothing length, the algorithm
finds 489 filaments in Mr205, having a total length per unit vol-
ume of 1.9 × 10−3 h2 Mpc−2 (l = 10 h−1 Mpc), while in Mr21,
226 filaments are found with a total length per unit volume of
7.6 × 10−4 h2 Mpc−2 (l = 15 h−1 Mpc). For comparison, the mock
Mr205 catalogue contains 451 filaments with a total length per unit
volume of 1.7×10−3 h2 Mpc2 (l = 10 h−1 Mpc) and the mock Mr21
catalogue contains 235 filaments with a total length per unit volume
of 8.2 × 10−4 h2 Mpc2 (l = 15 h−1 Mpc). Thus, the number den-
sity of filaments in the simulations closely matches that in the real
Universe.

We found in Section 4 that, above two smoothing lengths, dark
matter filaments had an exponential length distribution that very
closely matched that found in a Gaussian random field with the
same power spectrum. This suggests that, even if the filaments
in the data are in a different stage of their evolution (i.e. having
different σ 8) than those in the simulations, the length distributions

should be the same between the two. This does appear to be the
case, as shown in Fig. 10.

More interesting is the similarity of the width distributions of
filament elements, shown in Fig. 11. In the SDSS, we find mean
filament widths of 5.5 and 8.4 h−1 Mpc on 10 and 15 h−1 Mpc
smoothing scales, with standard deviations of 1.1 and 1.4 h−1 Mpc,
respectively. As is demonstrated in Fig. 7, filament element width
distributions broaden and shift to smaller widths as non-linear evo-
lution proceeds. A large discrepancy in, for example, σ 8 between
the simulations and real data should produce filament populations
that are at different stages of non-linear evolution and have differ-
ent width distributions. As such, Fig. 11 suggests that the SDSS
filaments are consistent with both the standard model and the set of
cosmological parameters used in the simulation.

7 R ESULTS AND D ISCUSSION

This paper develops and uses an algorithm called SHMAFF to identify
individual filaments in large-scale structure. In short, it uses the lo-
cal eigenvectors of the density second-derivative field to define the
filament axis and trace individual filaments. Filament ends are de-
fined as points at which the rate of change of the axis of structure
exceeds a specified threshold (see Section 2). In a � cold dark matter
(�CDM) cosmological simulation, this definition produces filament
samples that are consistent with our visual impression of structure
on a particular scale, are complete with few duplicate detections
(Section 3.2) and are robust to sparse sampling (Section 3.4).
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Figure 10. Length distributions of the Mr205 (lower) and Mr21 (upper) filament samples, with SDSS filaments plotted with a solid line and redshift-space
mock catalogues with a dashed line.

In addition to the smoothing scale, the filament finder takes the
input parameters C, the maximum angular rate of change of the
filament axis, and K, the width of filament removal in units of the
smoothing length. Using Gaussian smoothing, the ‘best’ values of
these input parameters are C = 30, 40 and 50◦ l−1 on 5, 10 and 15 h−1

Mpc smoothing scales, respectively, and K = 1 for all smoothing
scales. After we collapse the Fingers-of-God, contamination and
completeness in filament samples found in the mock Mr < −20.5
galaxy distribution are ∼26 and ∼81 per cent, respectively. Galaxy
clusters are important for defining large-scale filaments and should
not be removed before running the filament finder. In redshift space
and on smoothing scales above ∼10 h−1 Mpc, collapsing Fingers-
of-God to their mean position produces mock filament samples
comparable to those in real space.

In this paper, we presented two volume-limited subsamples from
the northern portion of the SDSS spectroscopic survey (using the
NYU-VAGC Catalogue) and computed their filament distributions
on 10 and 15 h−1 Mpc smoothing scales. These distributions were
then directly compared to those found in a series of redshift-space
mock galaxy catalogues generated from a cosmological simulation
using the concordance cosmology. The filament length distributions
found in SDSS data are very similar to those found in mock cata-
logues and are consistent with being drawn from an underlying ex-
ponential distribution. The width distributions of filament elements
are also very similar between the SDSS data and mock catalogues,
suggesting that real filaments are consistent with those in a �CDM
universe having σ8 = 0.85, �� = 0.71, �m = 0.29 and h = 0.69.

Tests on a range of cosmological simulations are needed before this
can be turned into a cosmological constraint.

We also generated filament distributions at six redshifts in the
output of a �CDM cosmological N-body simulation, from z = 3 to
z = 0. The orientation of the filament network is stable out to z =
3 on comoving smoothing scales at least as large as 15 h−1 Mpc.
Most of the filaments detected on 15 h−1 Mpc scales at z = 0 can be
detected at z = 3. In addition, on a given comoving smoothing scale,
filament width distributions shift to smaller widths as the filaments
continue to collapse. Narrower filaments will collapse more rapidly,
so this also leads to a broadening of the width distributions.

We have demonstrated that our filament finder is able to locate
and follow real structures, perhaps most strikingly in Section 4.1,
in which we showed that many of the same structures could be
seen in a cosmological simulation at both z = 3 and z = 0. There
is some subjective freedom in deciding what constitutes the end
of a filament, as no single physical threshold stands out as a dis-
criminator. Nevertheless, we demonstrated in Section 3.2 that the
total length of the cosmic network is insensitive to the choice of C
above a certain scale-dependent threshold (once double detections
are removed). The minimum value of C needed to probe the entire
filament network may be telling us about the intrinsic clumpiness
of filamentary structure and may therefore be able to distinguish
models of warm dark matter and CDM.

In this paper, we fully developed the SHMAFF algorithm and applied
it to the low-redshift galaxy distribution, but there is much that can
still be learned from its application to redshift surveys. The filament
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Figure 11. Width distributions of the Mr205 (lower) and Mr21 (upper) filament samples, with SDSS filaments plotted with a solid line and redshift-space
mock catalogues with a dashed line. The SDSS filaments in both samples are consistent with those in the cosmological simulations, suggesting that they are in
similar stages of non-linear evolution.

evolution seen in cosmological simulations (see Section 4.1) can be
tested in the DEEP2 galaxy survey (Davis et al. 2003) at z ∼ 1,
and the results of this comparison have already been presented in
Choi, Bond & Strauss (2010). On l = 5 and 10 h−1 Mpc scales, they
confirm a shift in the filament width distribution to smaller widths
from z ∼ 0.8 to 0.1, as well as a broadening of the filament width
distribution. A possible extension of this work is a careful test of
the �CDM cosmological model, including precision constraints on
cosmological parameters, such as σ 8, and tests for primordial non-
Gaussianity using the length distribution of filamentary structures.
In addition, it would be useful to elaborate on the relationship of
large-scale filaments to galaxy clusters and to explore the properties
of galaxies in filaments relative to the general galaxy population.
Finally, it would be interesting to conduct a careful search for walls
in SDSS. Paper I hinted at their presence in the data, but they were
only present at low contrast and the λ-space distributions were not
optimal for identifying individual wall-like structures.
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